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Abstract

The governing equations for fully developed laminar flow and heat transfer in the thermal entrance region of circular curved tubes are
solved numerically for power law fluids. Detailed descriptions of the secondary velocity profiles and temperature profiles as a function
of Dean number, Prandtl number and power law index are provided to elucidate the significant role of secondary convection. Results for
friction factors, asymptotic Nusselt numbers and Nusselt numbers in the thermal entrance region are computed and compared with the
published experimental and theoretical results for Newtonian and power law fluids. Satisfactory agreement is found. For a given Prandtl
and Dean number the Nusselt number increases with increases in power law index and the thermal entrance length is found to be shortened
for dilatant fluids in comparison with the pseudoplastic fluids. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Hellically coiled, circular tubes have received attention
in the literature due to their frequent use in heat exchang-
ers, chemical reactors, chromatographic columns and other
devices. They offer more efficient heat transfer, reduced
back mixing and smaller space requirements compared
with straight tubes. The enhancement of heat transfer and
mass transfer in coils occurs due to the existence of a
secondary flow which appears as twin, counter-rotating vor-
tices in the cross-sectional plane. Dean [6,7] showed that
a single dynamic similarity parameter, the Dean number
(NDe = NRe

√
a/b), whereNRe is Reynolds number anda

andb are the radius of the tube and curvature, respectively
can characterise the flow phenomena of Newtonian fluids
in a coiled tube.

Comprehensive reviews of the flow of Newtonian fluids
in curved pipes were published by Berger et al. [4], Ito [15],
Tarbell and Samuels [36] and Nandakumar and Masliyah
[23]. Most of the studies were confined to Newtonian flu-
ids and very little attention has been paid to the flow of
non-Newtonian fluids in curved circular tubes despite their
importance in polymer, biomedical and biochemical pro-
cessing. A comprehensive search of the literature on the
flow of power law fluids in curved circular tubes has been
listed in Table 1 and Table 2 for theoretical and experimental
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studies, respectively. Most of the theoretical analyses have
limitations that prevent their use for design calculations.

A review of laminar heat transfer for Newtonian fluids
in curved tubes has been published by Shah and Joshi [31].
Theoretical studies of power law fluids in coiled tubes in-
clude only those by Raju and Rathna [29], Hsu and Patankar
[13] and Kewase and Young [17]. Experimental correlations
have been reported by Rajasekharan et al. [28], Gupta and
Mishra [11] and Nandapurkar and Raja Rao [39]. These are
of little value in predicting the physics of heat transfer to
power law fluids in curved, circular tubes because of their
non-clarity of wall conditions and limitations of experimen-
tal parameters. Raju and Rathna’s analysis [29] is unable
to predict the effect of curvature on momentum and heat
transfer for power law fluids in coiled tubes. Kewase and
Young [17] developed a simple model for momentum and
heat transfer of power law fluids in circular curved tubes us-
ing the momentum integral method, their satisfactory predic-
tions of friction factor and asymptotic Nusselt number were
computed only for the high values of Dean numbers (NDe >

100). Hsu and Patankar [13] have numerically computed the
fully developed Nusselt numbers of power law fluids in cir-
cular curved tube for the condition of constant wall heat
flux. They reported that dilatant fluids exhibit higher Nusselt
numbers than Newtonian fluids. Conversely, pseudoplastic
fluids exhibit lower Nusselt numbers than Newtonian fluids.

Since Graetz [9], considerable literature has been pub-
lished to understand the phenomenon of heat transfer to
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Nomenclature

a radius of the tube
A defined in Eq. (5E)
b radius of the curvature of the tube
B defined in Eq. (5E)
cp specific capacity
d diameter of the tube
fc friction coefficient in curved tube
fs friction coefficient in straight tube
fw defined in Eq. (5D)
K ′

c defined by Mujawar and Raja Rao in
terms ofn andµp

Kc theal conductivity
L length of the tube (or heated length

of the tube)
m (n+ 1)/n
M defined by Mujawar and Raja Rao in

terms ofn andµp
n power law index
n′

c defined by Mujawar and Raja Rao in
terms ofn andµp

p nondimensional pressure
P dimensional pressure
r nondimensional radial co-ordinate
R dimensional radial co-ordinate
T dimensionless temperature
T∗ dimensional temperature
Tb bulk temperature
To reference temperature
Tw wall temperature
u, v, w nondimensional velocities inr, θ , φ
U, V, W dimensional velocities inR, θ , φ
Wa average velocity

Dimensionless groups
De Dean number based on apparent

viscosity (Oliver and Ashar [24])
Gz Graetz number based on apparent

viscosity (Oliver and Ashar [24])
NDe Dean number
NGz Graetz number
NNu Nusselt number
NPr Prandtl number
NRe Reynolds number
NUs Nusselt number in straight

tube (1.75Gz0.33δ0.33
n )

Greek letters
δn (3n+ 1)/4n, correction factor to allow

for velocity profile distortion due to
pseudoplastic behaviour of liquid

δ geometric parameter defined in Eq. (5E)
φ axial co-ordinate
λ curvature ratio
µp consistency index

ν µa/ρ = 8n−1µp
o defined in Eq. (8A)
O dimension
θ azimuthal co-ordinate
ρ density of the fluid
ω vorticity
ψ nondimensional stream function
Ψ dimensional stream function

Newtonian and non-Newtonian fluids in the thermal entrance
region of straight tubes for different boundary conditions
(Shah and Bhatti [32]). In contrast, practically no attention
has been paid to the thermal entrance region of coiled tubes.
Only the experimental study of Oliver and Ashar [24] has
suggested forced laminar convection of a power law fluid in
the thermal entrance region with a constant wall tempera-
ture. They correlated their heat transfer data for viscoelas-
tic polyacrylamide solutions in different coils by using the
modified Graetz Leveque equation.

The present paper presents a complete numerical so-
lution for fully developed laminar flow and heat transfer
for power law fluids in coiled tubes with a uniform wall
temperature. The analysis sheds light on the interactions
between the secondary flow and the developing temperature
field for power law fluids. The Navier–Strokes equations
in stream function/vorticity form are solved numerically
by the successive over-relaxation method, and heat transfer
equations are solved using an alternative implicit direction
method. The numerical solutions are obtained for the case of
steady-state, fully developed forced laminar convection of
isothermal, incompressible power law fluids in the thermal
entrance region of coiled tube within a rigorously treated
toroidal geometry. The computations for fully developed
laminar flow of power law fluids have been carried out over
a wide range of system parameters such ash 1< NDe <

500, 5 < λ < 100 and 0.5 < n < 1.5. The numerical
solutions for developing temperature profiles and average
local Nusselt numbers include the range ofNDe < 100,
0.7< n < 1.5 andNPr < 50. The numerical values of fric-
tion factors for different Reynolds numbers and curvature
ratios along with the results for Nusselt numbers at different
Graetz and Prandtl numbers are computed for Newtonian
fluids as a special case. These calculations for Newtonian
fluids were in good agreement with published theoretical
and experimental results (Hsu and Patankar [13]).

2. Mathematical formulation

A representation of a coiled tube and its co-ordinate sys-
tem is shown in Fig. 1. The toroidal geometry is a good
approximation for helically coiled tubes of a small pitch.

In order to determine the heat transfer of power law flu-
ids in coiled tubes, the equations of continuity, momentum
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Fig. 1. To roidal co-ordinate system.

and energy must be solved. The following assumptions are
made:

1. The flow is steady and fully developed.
2. The fluid is incompressible and obeys a power law.
3. The wall temperature is uniform.
4. The physical properties of fluids are constant and free

convection is negligible.
5. Viscous dissipation is negligible and heat sources do not

exist.
6. The axial conduction term is negligible compared with

the radial conduction terms in the energy equation.

The nondimensional equations of the axial velocityw,
the vorticityω, the stream functionΨ of the secondary flow
and the energy equations for the power law fluids under the
proposed model are given below:

1. Axial momentum equation:

O
∂2ω

∂r2
+ ∂ω

∂r

(
∂O

∂r
+

(
A+ 1

r

)
O − u

)

+∂w
∂θ

(
1

r2

∂O

∂θ
+ BOv

r2

)
+O ∂

2w

r2θ2

−w
(
O

λ2δ2
+ Bv + Au+ A∂O

∂r
+ B

r

∂O

∂θ

)

= 1

λδ

∂p

∂φ
(1)

2. Vorticity transport equation:

O
∂2ω

∂r2
+ ∂ω

∂r

(
∂O

∂r
+

(
A+ 1

r

)
O − u

)

+∂ω
∂θ

(
1

r2

∂O

∂θ
+ BOv

r2

)
+O ∂2ω

r2∂θ2

−
(
O

δ2λ2
− (Bv + Au)

)
ω

+2w

(
B
∂w

∂r
− A

r

∂w

∂θ

)
+ fw = 0 (2)

3. Stream function vorticity equation

λδω = ∂2ψ

∂r2
+ 1

r2

∂2ψ

∂θ2
+

(
1

r
− A

)
∂ψ

∂r
− B

r

∂ψ

∂θ
(3)

4. Energy equation:

NPr

[
ω

δ

∂T

∂φ

]

=
[
∂2T

∂r2
+ 1

r2

∂2T

∂θ2
+ 1

r

∂T

∂r
+ A∂T

∂r
+ B

r

∂T

∂θ

]

−NPr

[
u
∂T

∂r
+ v

r

∂T

∂θ

]
(4)

where

O =
[

1

2
(e2

rr + e2
θθ + e2

rθ + e2
θφ + e2

φr)

](n−1)/2

(5A)

err = 2
∂u

∂r

eθθ = 2

(
1

2

∂v

∂θ
+ u

r

)
(5B)

eφφ = 2(uA+ vB)

erφ =
(
∂w

∂r
− Aw

)

erθ = ∂v

∂r
− v

r
+ 1

r

∂u

∂θ
(5C)

eθφ = 1

r

∂w

∂θ
− Bw

fw =
(
∂O2

∂r2
− 1

r2

∂O2

∂θ2

)
erθ + 1

r

∂2O

∂θ∂r
(eθθ − err )

+∂O
∂r

[
∂erθ

∂r
+ 1

r

∂eθθ

∂θ
+

(
A+ 1

r

)
erθ

+B(eθθ − eφφ)
]

− 1

r

∂O

∂θ

[
∂err

∂r
− 1

r

∂erθ

∂θ

+A(err − eφφ)− Berθ

]
(5D)

u = − 1

rδ

∂ψ

∂θ
, v = ∂ψ

δ∂r

δ = b

a
+ r sinθ

A = sinθ

δλ
, B = cosθ

δλ
(5E)

Eq. (1) for axial momentum and Eq. (4) for temperature are
modified atr = 0 by using L’Hospital rule because of their
singularity.

O
∂4ω

2∂r2∂θ2
+ 2O

∂2ω

∂θ2
− w

×
[
O

δ2
+ Bv + Au+ A∂O

∂r
+ ∂2O

∂r∂θ

]
= 1

r

∂p

∂φ
(6)
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NPr

[
ω

λδ

∂T

∂φ

]
= 2

∂2T

∂r2
+ ∂4T

2∂r2∂θ2
+ B ∂

2T

∂r∂θ

−NPr

[
v
∂2T

∂r∂θ

]
(7)

The above equations are nondimensionalised by introducing
the following substitutions:

u, v,w = (U, V,W) ρan

µ
1/(n−2)
p

r = R

a

o = O ρa2

µ
(n−1)/(n−2)
p

ψ = Ψ ρa
(3n−4)

µp

ω = Ω ρa2

µ
1/(n−2)
p

(8A)

p = P ρna2n

µ
1/(n−2)
p

T = (T ∗ − T o)

(Tw − T o)

The Reynolds and Prandtl numbers for power law fluids are
defined in the following manner:

NRe = ρ(Wa)
2−ndnt
µp

,

NPr = ρ(n−1)/(n−2)cpa
2(n−1)/(n−2)

µ
1/(n−2)
p Kc

(8B)

3. Boundary conditions

The following standard boundary conditions for constant
wall temperature are used:

ω(1, θ) = 0,
∂ω

∂r
(0,0) = 0

∂ω

∂θ

(
r,±π

2

)
= 0

ψ(1, θ) = 0,
∂ψ

∂r
(1, θ) = 0

ψ(0,0) = ψ
(
r,±π

2

)
= 0

ω(1, θ) = ∂2ψ

δ∂2r
(1, θ) (9)

ω(0,0) = ω
(
r,±π

2

)
= 0

φ = 0, T = 0

∂T

∂θ

(
r,±π

2

)
= 0

T (1, θ) = 1

∂T

∂r
(0,0) = 0

4. Method of solution

Eqs. (1)–(4) were numerically solved using finite differ-
ence scheme. The computations have been carried out only
in the domain of the upper semi circular region of the tube
cross-section due to the symmetry along the central plane.
Standard second order central difference operators were used
for the first and second derivative ofw, ω, ψ andT in both
the radial and angular directions.

The finite difference equations forw,ω andψ were solved
by a successive over-relaxation technique (Greenspan [10]).
The energy Eq. (4) is somewhat analogous to the two di-
mensional unsteady-state heat conduction equation, and an
alternative direction implicit (ADI) method transformed the
energy Eq. (5) into a set of algebraic equations (Douglas and
Gunn [7] and Peaceman and Rachford [26]). When second
order central differences are used, the result is tri-diagonal
system. This can be solved using the Thomas algorithm
[37]. The steady-state values ofu, v andw for a particu-
lar Reynolds number, power law index and curvature ratios
were then used to calculate temperature profiles as a func-
tion of φ.

A detailed description of the computational procedure and
criteria for stability and convergence are available elsewhere
(Agrawal et al. [2]).

Once a complete convergent solution of velocities were
obtained, values of the Reynolds numbers, Dean numbers
and friction factors were computed for the particular value
of axial pressure gradient, curvature ratio and power law
index. The Reynolds numbers, Dean number and friction
factors for power-low fluids in curved tube are

NRe = 2n

π

{∫ 2π

0

∫ 1

0
rw dr dθ

}2n

fs = 8{2((3n+ 1)/n)}n
NRe

(10)

fc = 2(4/(2−n))(NRe)
(2/(n−2))

{
−1

λ

∂p

∂φ

}

NDe = NRe√
λ
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The computed values of temperature were used to obtain the
peripherally averaged Nusselt and Graetz numbers:

NNu(θ, φ) = 2

(Tw − Tb(φ))

∂T

∂r
(1, θ, φ) (11)

NNu(φ) = NReNPr

2λ(Tw − Tb)

∂T

∂φ
(φ) (12)

NGz = π NReNPr

2λφ

whereTb is the bulk temperature which is defined as

Tb(φ) =
∫ 2π

0

∫ 1
0 Twr dr dθ∫ 2π

0

∫ 1
0wr dr dθ

(14)

4.1. Axial velocity profiles

The patterns of axial velocity profile in horizontal and
vertical plane for the power law fluids for different values of
Dean number of 60 and 300 are shown in Fig. 2. These pat-
terns of velocity profiles are compared to those of Takami et
al. [34,35] and found to be in good agreement. Fig. 2 shows

Fig. 2. Axial velocity profiles using numerical solutions.

the influence of power law index,n, on the axial velocity
profiles for given Dean number. As the pseudoplasticity in-
creases, the viscous boundary layer becomes limited to the
outer wall of the pipe and its thickness reduces as shown in
Fig. 2. For dilatant fluids it can be seen that the viscous re-
gion becomes thicker and shifts towards the central region.
The velocity profiles tend to flatten for the lower value of
n, which is in conformity with the effect ofn on the veloc-
ity profile in a straight tube. It can also be observed that, as
the value of Dean number increases, the maximum velocity
shifts more towards the outer wall for power law fluids.

4.2. Effect of power law index on fc/fs

The values of friction factor for Newtonian and power
law fluids are shown in Fig. 3. For the Newtonian fluids, the
friction factor results are compared with published theoreti-
cal and experimental results (Ito [14], White [38]). It is clear
that the present analysis predicts the experimental data over a
wide range of system parameters with a high degree of accu-
racy. Liu et al. [18] investigated experimentally the pressure
drop of fully developed incompressible laminar Newtonian
flow in helical coils of constant cross-section having a finite
pitch. Their experimental results for zero pitch are found in
good agreement with the published experimental results of
Ito [14] and White [38]. Our present analysis is also able to
simulate the experimental results of Liu et al. [18] for zero
pitch. The dependence of power law index and Dean num-
ber on friction factor is shown in Fig. 3. For a given fluid,
the friction factor increases with increases in Dean number,
and for a givenNDe, it decreases with increases in power
law index. At a first glance it may appear that the present
results are contradictory to the results of Hsu and Patankar
[13]. However, this discrepancy is caused by to the differ-
ence in nondimensionalizing the equation of motion which
makes the Reynolds number change by a factorC whereC
is (8n (3n+ 1)/4n)n . Individual values of friction factor for
power law fluids are compared with the results of Hsu and
Patankar [13] as shown in Fig. 3b and c. This difference may
be attributed to the fact that the present analysis was carried
out without introducing assumptions and simplifications
of Dean’s analyses [5,6] and it is expected to give more
realistic predictions.

4.3. Comparison of fc/fs results with published results

The results forfc/fs for n = 0.75 and 0.82 were compared
with the results of Hsu and Patankar [13], and with the data
of Mujawar and Raja Rao [22] and Mashelkar and Devara-
jan [19,20]. The agreement of the computed results with the
experimental data is good. It is relevant here to comment on
the empirical correlations offc/fs proposed previously. The
correlation of Rajasekharan et al. [28] and Gupta and Mishra
[11,12] and Takami et al. [34,35] expressfc/fs as a function of
Dean number only and do not account for the influence ofn.
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Fig. 3. (a) Variation of the friction factor ratio withNDe for different value ofn; (b) and (c) comparison of the fully developed friction factors with the
published results.

The correlation of Mashelkar and Devarajan [19,20] does
not correctly describe the data for Newtonian flow in curved
tube but the correlation described by them is a good de-
sign tool to calculatefc/fs for power law fluids as shown in
Fig. 3b and c. The correlation given by Mujawar and Raja
Rao [22] does not have these obvious shortcomings but as

indicated in Fig. 3b and c, their data and their correlation
tend to underestimatefc/fs values. These shortcomings were
also reported by Hsu and Patankar [13]. Saxena and Nigam
[30] have pointed out that the Mujawar and Raja Rao [22]
dimensionless number (M) may not be a true representa-
tion of the hydrodynamics in the helical flow of power law
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Fig. 4. Development of isotherms for differentNDe and NPr at different axial positions (1/NGz) (n = 0.7). I: inner wall; O: outer wall.

fluids and is not useful for characterising axial dispersion
in coils.

4.4. Development of temperature profiles

The interaction between the fully established secondary
flow of power law fluids and the developing temperature
fields in curved pipes represent a major departure from
the classical Graetz [9] problem in straight tube. The de-
velopment of the temperature profile may be understood
by a study of the isotherms at different axial positions.

Figs. 4 and 5 show the computed temperature profiles for
different Prandtl and Dean numbers forn = 0.7 and 1.5
corresponding to pseudoplastic and dialtant behaviour, re-
spectively. At different axial positions which are represented
by 1/NGz number, the temperature fields have been plotted
in the form of isotherms. For very short distance from the
tube inlet (1/NGz is O(10)−4 to O(10)−3) the secondary
flow effect is negligible so the isotherm in a coiled tube
is similar to that in straight tube. The secondary velocities
increase very rapidly with increasing distance from the tube
wall. Therefore, as the thermal boundary layer grows with
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Fig. 5. Development of isotherms for differentNDe and NPr at different axial positions (1/NGz) (n = 1.5). I: inner wall; O: outer wall.

advancing axial distance, the secondary convection of heat
becomes pronounced. This temporarily arrests the growth
of the thermal boundary layer and the secondary convection
transfers much of the heat into the fluid core. Because of
this effect the isotherms become kidney shaped and more
skewed toward the outer wall of the tube. At a particular
value of 1/NGz (O(10)−2 to O(10)−1) the isotherms appear
in two cell pattern. As the temperature profile approaches
to the fully developed stage the isotherms line up with the
secondary flow and the two closed contours of isotherms are
found to be symmetrical about the plane of the curvature of
the coil. The change in pattern of developing temperature
profiles for different power law fluids are discussed later.

4.5. Variation of Nusselt numbers in the
thermal entrance region

Figs. 6 and 7 display the behaviours of the circumferen-
tial averaged local Nusselt number for power law fluids as a
function of various Dean and Prandtl numbers. The variation
of the local Nusselt numbers in the thermal entrance region
is of considerable importance to basic understanding of heat
transfer in coiled tubes. The use of two alternative expres-
sions (Eqs. (11) and (12)) in evaluating the local Nusselt
numbers is particularly useful in checking the accuracy of
numerical results. The values found using these two expres-
sions show a maximum deviation of 1.5% from the average
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Fig. 6. Effect of power law index on local Nusselt number variations along the axial distance forNPr = 5.

values, indicating good convergence and accuracy. The Nus-
selt number variations are closely related to the isotherms at
various axial distances. The oscillatory character of the Nus-
selt numbers is due to the circulatory secondary flow. One
direct consequence of the circulation is a sudden decrease
in temperature gradient at the tube wall and therefore a de-
crease in heat transfer coefficient. The cyclic variations damp
out as the fully developed temperature field is approached
and the Nusselt number approaches an asymptotic value. In-
creasing the Dean number is seen to increase the Nusselt
number and shorten the thermal entrance length. Figs. 6 and
7 show that the intensity of the cyclic behaviour of Nusselt
number increases with increase inNPr andNDe. This is due
to the increase in the intensity of the secondary convection.
It may also be concluded from Figs. 6 and 7 that the thermal
entry length is mainly influenced by thermal diffusivity.

It is clear from the Figs. 6 and 7 that the asymptotic val-
ues of Nusselt number decrease with power law index for
a given Prandtl and Dean numbers. The thermal entrance
length also increases with decreases in power law index at
a particular value of Dean and Prandtl numbers. This phe-
nomena is due to the effect of secondary flow of power law

fluids. The intensity of secondary flow in power law fluids
decreases with increasing pseudoplasticity of the flu-
ids (Takami et al. [34,35], Hsu and Patankar [13] and
Agrawal et al. [1]). The power law constitutive equa-
tion reveals that the pseudoplastic fluids (n < 1) sustain
less strain and dilatant fluids (n > 1) sustain more strain
than Newtonian fluids. Therefore, as the pseudoplasticity
of the fluids increases, the effect of convection becomes
less and hence the velocity profiles become more blunt
which causes a decrease in the intensity of secondary
flow. The weak intensity of secondary flow in pseudo-
plastic fluids increases the length of the thermal entrance
region.

4.6. Asymptotic Nusselt number

The asymptotic values of numerically computed Nusselt
number for Newtonian fluids are compared with published
results of Dravid et al. [8], Akiyama and Cheng [3]; Hsu and
Patankar [13] as shown in Table 3. The comparison is good.
Some discrepanices may occur due to the difference in the
boundary conditions as constant flux was assumed by Hsu
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Fig. 7. Effect of power law index on local Nusselt number variations along the axial distance forNPr = 50.

and Patankar [13]. The asymptotic values of Nusselt num-
ber for power law fluids are compared with those of Hsu
and Patankar [13] in Table 4. For given Prandtl and Dean
numbers the asymptotic Nusselt number increases with in-
creases in the power law index. The Nusselt number also in-
creases with increases in Dean number and Prandtl number
for given power law fluid. Table 4 also confirmed the con-
clusion of Janssen that the over all heat transfer coefficient
for the cases of constant wall temperature and constant wall
heat flux are similar.

Table 3
Comparison of asymptotic Nusselt numbers of Newtonian fluids with published results

NDe NPr Dravid et al. [8] Hsu and Patankar [13] Akiyama and Cheng [3] Present analysis

50 5 7.098 8.94 – 8.98
10 8.91 10.91 11.1 11.7
50 10.62 17.45 – 18.21

100 5 9.62 12.21 – 11.9
10 10.86 16.58 17.30 17.39
50 14.40 23.12 – 25.04

4.7. Comparison of heat transfer results with
experimental result

The present analysis is compared with the Janssen and
Hoogendoorn’s [16] experimental data and correlation as
shown in Fig. 8. Their experimental results followed the os-
cillating curve for very short tube lengths. For the thermal
entrance region they derived the empirical correlation which
predicted the results within 20% deviation. It is clear from
the Fig. 8 that the present analysis is able to simulate the
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Table 4
Comparison of asymptotic Nusselt number of power law fluids with Hsu
and Patankar result [13]

N NDe NPr Values of asymptotic Nusselt number

Present analysis Hsu and Patankar
analysis [13]

0.5 25 5 7.25 6.64
15 8.10 7.83
30 10.03 9.49

50 5 8.30 7.59
15 10.55 9.25

0.75 50 5 9.23 8.75
15 11.50 10.35
30 12.85 12.25
50 15.60 14.85

100 5 12.05 11.25
15 14.50 12.15
30 16.55 14.85
50 20.22 17.10

1.25 75 5 15.90 15.39
15 22.10 21.80
30 26.80 25.08
50 32.20 31.21

100 5 20.95 20.52
15 24.12 23.60
30 30.50 29.93
50 37.20 30.37

Fig. 8. Comparison of present study with experimental data of Janssen and Hoogendoom [16].

oscillating nature of the experimental results in the thermal
entrance region and is in reasonably good agreement with
their empirical correlation:

NNu = (0.32+ 3λ−1)NReNPr

(
d

z

)0.34+0.8λ−1

(14a)

For 2.0< NDe < 8.3 × 102,

30< NPr < 4.5 × 105 and 10−2 < λ−1 < 8 × 10−2

(14b)

Before comparing the experimental results of Oliver and
Ashar [24] with our numerical model, it is essential to
understand how they have characterized the phenomena of
heat transfer of power law fluids in thermal entrance region
of circular curved tube. They correlatedNNu as a function
of power law index, Dean number and Graetz number. The
effect of temperature on apparent viscosity was included by
group (νw/νb)0.14 in the correlations. Our model for heat
transfer of power law fluids in the thermal entrance region is
characterised by Dean number, Prandtl number, Graetz num-
ber and power law index. The effect of temperature on ap-
parent viscosity was not considered. The experimental study
did not consider Prandtl number as an independent variable
because of its dependence on the Graetz number. The values
of Dean number, Prandtl number and Graetz number in the
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Fig. 9. Comparison of numerical results with experimental correlation predicted by Oliver and Asghar [24].

experimental analysis were computed by using the expres-
sion of apparent viscosity based on a straight tube geometry.
The experimental values of Nusselt number were calculated
on the basis of logarithmic mean temperature over the length
of the tube. Oliver and Ashar [24] measured heat transfer
and correlated their data by using the modified Graetz Lev-
eque equation. The resulting correlations are

NNu

(
νw

νb

)0.14

= 1.75δ0.33
n Gz0.33(1 + 0.118De0.5),

60< De< 2000 (15a)

NNu

(
νw

νb

)0.44

= 1.75δ0.33
n Gz0.33(1 + 0.36De0.25),

4< De< 60 (15b)

Fig. 9 shows the comparison of numerical results of power
law fluids (n = 0.8 and 0.86) for different values of Dean
number with the experimental correlation of Oliver and
Ashar [24]. As suggested by Oliver and Ashar [24], the
values of (NNu/NUsδ

1/3
n )(νw/νb)0.14 have been plotted for

different values of Dean number (NDe) in Fig. 9. The
solid line in Fig. 9 presents the experimental correlation
Eqs. (15a) and (15b) values of (NNu/NUsδ

1/3
n )(νw/νb)0.14

for different Dean number and the symbols and (�) rep-
resent the numerically computed values forn = 0.8 and
n = 0.86, respectively. It may be concluded from Fig. 9 that
the effect of secondary convection in curved tube enhanced
the heat transfer by the factor of 1.5–2.0 with corresponding
to straight tube for the same values of Reynolds, Prandtl
and Graetz number. Therefore, the coils offer considerable

advantage over straight tube from the point of view of
laminar heat transfer of power law fluids.

5. Conclusions

The purpose of this paper is to present a complete nu-
merical solution for the Graetz problem in coiled tubes for
power law fluids with uniform wall temperature valid upto
NDe < 100,NPr < 50 and 0.7 < n < 1.5. The interaction
between the effect of secondary flow of power law fluids
and developing temperature profiles have shed some light
on the phenomena of heat transfer in the thermal entrance
region of circular curved tube. The following conclusions
may be drawn for the phenomena of fully developed lami-
nar flow and forced convection in thermal entrance region
of laminar flow of power law fluids flowing through circular
curved tubes:

1. The secondary flow becomes weak as the power law in-
dex decreases, but its dependence on Dean number is
similar to that of Newtonian fluids.

2. The axial velocity is distorted by centrifugal forces, al-
though it tends to flatten as the pseudoplasticity of the
fluid increases.

3. The friction factor for power law fluids increases with in-
creases in Dean number. For a given value of Dean num-
ber the value of friction factor increases with increases
in power law index.

4. The Graetz problem of power law fluids flowing through
curved circular tubes is characterised by the secondary
flow effect superimposed upon the usual thermal entry
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effect. Due to the effect of secondary flow the Nusselt
number does not decrease continuously with axial dis-
tance, but undergoes cyclic oscillations with axial dis-
tance. These oscillations damp out as the region of fully
developed temperature fields are approached.

5. At a particular value of Dean number of power law flu-
ids, the increase in value of the Prandtl number is to
shorten the thermal entrance length. As Prandtl number
increases the temperature fields develops rapidly. The ef-
fect of Dean number is similar to that of Prandtl number
for a given power law fluid.

6. The thermal entrance length increases with increase in
pseudoplasticity of the fluid for a given Dean number
and Prandtl number. At a particular value of Dean and
Prandtl number the values of Nusselt number increase
with increase in the values of power law index.
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